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Abstract
We study the connection between the BCS pairing model and the
inhomogeneous vertex model. The two spectral problems coincide in the quasi-
classical limit of the off-shell Bethe ansatz of the disordered six-vertex model.
The latter problem is transformed into an auxiliary spectral problem which
corresponds to the diagonalization of the integrals of motion of the BCS model.
A generating functional whose quasi-classical expansion leads to the constants
of motion of the BCS model, and in particular the Hamiltonian, is identified.

PACS numbers: 03.65.Fd, 74.20.Fg

1. Introduction

One of the most successful models of interacting electrons is the BCS model of pairing [1].
Originally proposed to describe properties of superconductors [2], the pairing idea has been
applied to a large variety of physical systems in nuclear physics [3] and in QCD [4]. Recent
experiments in metallic nanoparticles [5] have renewed the interest in the problem of pairing
correlations in mesoscopic systems [6]. The BCS Hamiltonian consists of a kinetic and an
interaction term which describes the attraction between electrons in time-reversed states

H =
�∑
j=1

σ=↑,↓

εjσ c
†
jσ cjσ − g

�∑
j,j ′=1

c
†
j↑c

†
j↓cj ′↓cj ′↑. (1)

The quantum number j ∈ {1, . . . , �}, σ ∈ {↑,↓} labels a shell of doubly degenerate time-
reversed states of energy εj ; cj,σ and c

†
j,σ are the corresponding electronic operators, g is

the BCS coupling constant. The low-energy properties associated to this model are universal
functions of the ratio between two energies, the single-particle average level spacing and the
BCS gap [6].
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Various exact results have been obtained for the BCS Hamiltonian.
In the limit g → ∞ the exact eigenvalues and eigenstates can be found (see, for

example, [7]) and the integrals of motion are Gaudin Hamiltonians [8]. An important
consequence of the relation with the isotropic Gaudin magnet (discussed in appendix A),
is that the quantum inverse scattering method (QISM) [9] for the g → ∞ BCS model can be
related with the QISM for the Gaudin model [10]. (The same set of operators already emerged
from the quasiclassical expansion of the twisted monodromy matrix of the inhomogeneous
vertex model.) The g → ∞ BCS model can be also related to the inhomogeneous vertex
models [11]. (The inhomogeneous vertex models are related to the Gaudin models [10, 15]:
the BA equations of the Gaudin model can be obtained by taking the quasi-classical limit of
the BA equations of vertex models.)

Much less work has been done for finite g. The exact solution was found by Richardson
and Sherman (RS) [16] and independently by Gaudin [17] by means of the Bethe ansatz (BA)
technique. Approximate expression of correlation functions were found in [18]. More recently,
the integrals of motion of the BCS model were obtained [10, 19] and were diagonalized by
means of the algebraic BA.

In this paper we show that for finite g the BCS model is connected to a disordered six-
vertex model through the off-shell BA (OSBA) introduced by Babujian et al in [15]. (The
OSBA deals with the off-diagonal terms generated by the application of the transfer matrix
to the Bethe vectors [15].) In this framework, the known connection between the isotropic
Gaudin models and the inhomogeneous vertex model is obtained as the mass shell limit which
corresponds to g → ∞.

A strong hint towards our result is provided by a recent work by Sierra [20] who has
shown connection between the BCS pairing model and a su(2)c Wess–Zumino–Novikov–
Witten conformal field theory (CFT), in the singular limit when the central charge is infinite;
the RS wavefunctions solve the Knizhnik–Zamolodchikov equations for the CFT correlation
functions. The results of Sierra are indeed related to the connection existing between models
in statistical mechanics and correlation functions of a suitable CFT established through the
OSBA. In fact the solution of the quasi-classical OSBA equations is equivalent to solution
of the Knizhnik–Zamolodchikov equations [21, 22]. In particular, the quasi-classical OSBA
equations for the vertex models generate the correlators of the su(2) Wess–Zumino–Novikov–
Witten CFT.

The paper is organized as follows. In section 2 we review the exact solution of the
pairing model. In section 3 the quasi-classical expansion of the OSBA of the disordered
six-vertex model is identified as the diagonalization of the BCS model. Section 4 is devoted
to the conclusions. The connection between the diagonalization of the pairing model for
infinite pairing coupling constant g and the diagonalization of Gaudin magnet is reviewed in
appendix A. In appendix B we summarize the QISM of the inhomogeneous vertex model.

2. The exact solution of the pairing Hamiltonian

In this section we review the exact solution [16, 17] of the BCS model (equation (1)) and the
formulation of its integrability. Due to the form of the pairing interaction in equation (1),
single occupied states are frozen and we can focus on scattering of pairs. The Schrödinger
equation for a state of N Cooper pairs

H |N〉 = E|N〉 (2)
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has the solution [16, 17]

|N〉 =
N∏
α=1

σ +(eα, ε)|0〉 σ +(eα, ε) :=
�∑
j=1

σ
†
j

2εj − eα

E =
N∑
α=1

eα.

(3)

The operators σ−
j := cj,↓cj,↑, σ +

j = (σ−
j )

† and σ z
j := (c

†
j,↑cj,↑ + c

†
j,↓cj,↓ − 1)/2 realize

su(2) in the lowest representation. The vacuum state is the highest weight vector of su(2):
|0〉 := |1/2,−1/2〉. The operators {σ±(eα, ε), σ z(eα, ε)} generate (for generic eα) the Gaudin
algebra G[sl(2)] (see appendix A and equation (15) of the next section). The energy E is given
in terms of the spectral parameters eα which satisfy the algebraic equation [16]

1

g
+

N∑
β=1
β �=α

2

eβ − eα
−

�∑
j=1

1

2εj − eα
= 0 α = 1, . . . , N. (4)

The method employed by RS has analogies with the coordinate BA technique. In fact, in the
coordinate BA the ansatz functions are plane waves (describing free particles) modified to
include the interaction. In the RS solution the ansatz functions are the solutions of the model
when pairs of time-reversed electrons are treated as bosons; these functions are modified
because Cooper pairs behave as hard-core bosons. In both the RS and the BA procedures
the modification enters the set of the algebraic equations for the rapidities (Bethe equations)
parametrizing the eigenvalues of the Hamiltonian.

By using the spin realization of pair operators {σ z
j , σ

±
j }, the pairing Hamiltonian can

be written as a quantum spin model with long-range interaction in a non-uniform fictitious
magnetic field, given by εj

H =
�∑
j=1

εjσ
z
j − g

2

�∑
j,l=1

(σ +
l σ−

j + σ +
j σ−

l ) + const. (5)

Cambiaggio et al [19] found that the integrals of motion τj of this model, if εj �= εl , ∀j �= l,
have the form

τj = 1

g
σ z
j − �j (6)

and satisfy the commutation relations [H, τj ] = [τj , τl] = 0, ∀j, l ∈ {1, . . . , �}. The
operators �j in (6) are spin- 1

2 Gaudin Hamiltonians [8]

�j :=
�∑
l=1
l �=j

σj · σl

εj − εl
. (7)

The commuting operators τj were also found by Sklyanin [10] by taking the quasi-classical
limit of the monodromy matrix of the inhomogeneous vertex model twisted by a term
proportional to σ z

j /g. The pairing Hamiltonian can be expressed as function of the integrals
of motion as

1

g3
H = 1

g2

�∑
j=1

εj τj +
�∑

j,l=1

τj τl + const. (8)

In the limit g → ∞ the problem is equivalent to the diagonalization of (all) the Gaudin
Hamiltonians (see appendix A for details).
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Figure 1. The vertex (α, j) ∈ �. Disorder zj is distributed
along the vertical lines. It is due to both the spin inhomogeneity
and impurities Ij distributed in the lattice: zj ≡ z(Sj ) + z(Ij ).

3. The OSBA of the inhomogeneous vertex model and the pairing model

Vertex models are two-dimensional classical models which were solved long ago by inverse
methods [11]. Generalizations to su(2) higher representations and to include disorder were
intensively studied [12–14].

In this section we introduce a vertex model in which the inhomogeneity is due to the
combination of given (see below) disordered distribution of both the spin and the impurities
in the lattice. Then we apply the scheme developed by Babujian et al [15] to relate this
inhomogeneous vertex model to the BCS model equation (1).

The model is defined in the following way. On the edges of the square lattice � : Nv ×Nh

(Nv columns and Nh rows) are arranged Nv + 1 types of spin variables. On horizontal edges
(labelled by α = 1 . . . Nh) are arranged the spins σ taking spin projection mα ∈ {±1/2}.
On the columns (labelled by j = 1 . . . Nv) the spin variables Sj can take any value
mj ∈ {−sj , . . . ,+sj } of the sj th representation of su(2). The partition function is restricted
to configurations for which an even number of spins are into (or out of) each lattice site
(vertex); configurations in which the four spins are all in or all out are excluded (ice rule).
The ‘scattering’ between spin states (mα,mj ) → (m′

α,m
′
j ) of vertex (α, j) (see figure 1)

have weights fixed by the universal matrix elements R
mj ,m

′
j

mα,m′
α
(λ − zj ) where λ is the spectral

parameter. The quantities zj (see also [13]) shift spectral parameters as inhomogeneities which
we assume distributed only along the columns of � (figure 1).

The variables zj take into account of disorder induced by the mixture of spin
representations and/or by the actual distribution of impurities Ij in �: zj ≡ z(Sj ) + z(Ij ).
We assume that both z(Sj ) and z(Ij ) enter the universal matrix (see equation (B.1)) in the
same functional form. The disordered six-vertex model corresponds to the choice z(Sj ) = 0,
z(Ij ) �= 0. We impose periodic boundary conditions.

The transfer matrix T (λ|z), where z := (z1 . . . zNh
), can be expressed in terms of rational

R-matrices RX, X = {σ, S} (see equation (B.1)) which fulfil Yang–Baxter relations (see
appendix B). This implies the integrability of the model: [T (λ|z), T (µ|z)] = 0.

The application of the transfer matrix to the Bethe vector #(λ1 . . . λN |z) reads

T (λ|z)#(λ1 . . . λN |z) = �(λ, λ1 . . . λN |z)#(λ1 . . . λN |z)

−
N∑
α=1

Fα

λ − λα
#α(λ1 . . . λα−1, λ, λα+1 . . . λN |z) (9)
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(for the explicit form of the quantities T (λ|z), #(λ1 . . . λN |z), �(λ, λ1 . . . λN |z), Fα , and
#α(λ1 . . . λα−1, λ, λα+1 . . . λN |z) in (9), see [15]). The condition for the diagonalization of T
(and of the constants of motion generated by T ) is that the spectral parameters are chosen to
cancel the ‘unwanted terms’(the second contribution to equation (9)) in the spectral problem (9);
a sufficient condition is Fα = 0 (algebraic BA equations). Such a condition has been termed
as ‘mass shell’ constraint [15] imposed on equation (9). The OSBA spectral problem, instead,
arises when the ‘unwanted terms’ are considered in equation (9); the spectral parameters obey
a new set of equations called OSBA equations (see equation (13) below). The quasi-classical
limit of the OSBA has remarkable properties. Namely, the solutions of the quasi-classical
OSBA problem satisfy the Knizhnik–Zamolodchikov equations [21,22] for the su(2) CFT. In
the following we shall see how the quasi-classical limit of the OSBA problem for the disordered
vertex model is solved by spectral parameters fulfilling equation (4).

The quasi-classical limit of the vertex model is obtained through the expansion ofRX(x; η)
in powers of η (RX(x; 0) is the identity).

Using the expressions for the monodromy, transfer, and universal matrix equations (B.1),
(B.3), the quasi-classical limit of the OSBA equation (9) reads

Nv∑
j=1

Hj

λ − zj
φ = hφ +

N∑
α=1

fα

λ − λα
φα (10)

up to order O(ηN+2), where the explicit form of h and φα in (10) is given in [15]. By integrating
equation (10) on a closed loop in the complex λ-plane encircling the pole λ = zj we obtain

Hjφ = hjφ +
N∑
α=1

fα

zj − λα
S+
j φ

′
α (11)

hj =
Nv∑
l=1
l �=j

slsj

zl − zj
−

N∑
α=1

sj

λα − zj
j = 1 . . . Nv (12)

fα =
N∑
β=1
α �=β

1

λα − λβ
−

Nv∑
j=1

sj

λα − zj
α = 1 . . . N. (13)

The Bethe vectors in the quasi-classical limit are

φ :=
N∏
β=1

S+(λβ, z)|vac〉

φ′
α :=

N∏
β=1
β �=α

S+(λβ, z)|vac〉.
(14)

Here |vac〉 = ⊗Nv

j=1|sj ,−sj 〉, where S−
j |sj ,−sj 〉 = 0, i.e. |vac〉 is the highest weight vector

in ⊗j su(2)j . The three operators S±,z(λβ, z) := ∑Nv

j=1 S
±,z
j /(zj − λβ) generate higher-

dimensional representations of the Gaudin algebra G[sl(2)], given by (see also equation (A.1))

[Sz(λα, z), S
±(λβ, z)] = ±S±(λα, z) − S±(λβ, z)

λβ − λα

[S+(λα, z), S
−(λβ, z)] = Sz(λα, z) − Sz(λβ, z)

λβ − λα
.

The ‘mass shell’ constraint fα = 0 corresponds to the diagonalization of the Gaudin
model (see appendix A).
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The solution of the spectral problem for the pairing model is recovered substituting

fα = 1

2

(
Nv∑
j=1

1 − 2sj
λα − zj

+
1

g

)
α = 1 . . . N (15)

in the left-hand side of equation (13). In fact, the resulting equations coincide with equation (4).
Substituting equation (15) in (11), and summing over index j = 1 . . . Nv we obtain

N∑
α=1

(
Nv∑
j=1

4sj − 1

λα − zj
+

1

g

)
φ = 0 (16)

where we have used the fact that
∑Nv

j=1 hj = −∑N
α=1

∑Nv

j=1 sj /(λα − zj ). Equation (16)
shows that the OSBA spectral problem is transformed in a spectral problem involving only
diagonal matrix elements of suitably shifted (by fα) transfer matrix of the vertex model (in the
quasi-classical limit).

Since the limit g → ∞ should correspond to the same result of fα → 0 for generic sj
(compare with equation (A.4)), we impose that the distribution of spins Sj through the lattice
fulfils the condition

Nv∑
j=1

(1 − 2sj )

(λα − zj )
≡ 0. (17)

In this case equation (15) reduces to

fα = 1

2g
α = 1, . . . , N. (18)

We choose sj = 1/2,∀j in order to fulfil equation (17): the inhomogeneous vertex model
becomes the disordered six-vertex model since z(Sj ) = 0 and z(Ij ) �= 0. This implies that

Hj ≡ �j and φ ≡ |N〉
where Nv = � (compare with equations (3) and (7)). Equation (16) can be transformed in the
following eigenvalue equation:

�∑
j=1

N∑
α=1

( −σ z
j

2εj − eα
− 1

N
�j

)
φ =

�∑
j=1

N∑
α=1

τj,αφ (19)

τj,α :=
(

1

�g
− 1

N
hj

)
(20)

where (4) (or (13), (18)), (12) and
∑N

β=1 σ
z(eα, ε)φ = 1/2

∑N
β=1

∑�
j=1 1/(eα − 2εj )φ have

been used (the parameters in (12)–(20) are redefined as zj ↔ 2εj , λα ↔ eα ). We point out
that quantities in (20) are the eigenvalues of operators τj in equation (6) for generic �/N . At
‘half-filling’ � = 2N equation (20) reduces to

τj,α = 1

�

(
1

g
− 2hj

)
(j = 1, . . . , �). (21)

Equations (20) and (21) coincide with those ones found by Sklyanin [10] and by Sierra [20].
The main result obtained in this paper is the connection between equations (11) and (19),

(20) through (15). The OSBA problem for the disordered six-vertex model (which does not
account for diagonalizing the transfer matrix of the vertex model) reveals the existence of a
class of spectral problems (parametrized by fα) which turns out to be diagonal on the quasi-
classical Bethe vectors basis. For fα fixed by (18) the diagonalization of the BCS model is
obtained.
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Furthermore, what we have discussed so far implies that the pairing Hamiltonian can be
obtained from functionals of τj whose quasi-classical expansions have the following form:

T (e|z) =
∞∑
a=0

η2aea−1

[
1

2g2
+ τ(e)

]a
(22)

with

τ(e) :=
�∑
j=1

τj

e − 2εj
. (23)

We point out that [T (e|z), T (e′|z)] = 0,∀e, e′ since quantities τj commute with each other.
The residue in the poles e = 2εj of the η2 coefficient provides the integrals of motion τj . The
residue of the η4 coefficient reads (see equation (8))

�∑
j,l=1

τj τl +
1

g2

�∑
j=1

εj τj = 1

g3
H. (24)

4. Conclusions

We have established a novel connection between the disordered six-vertex model and the BCS
model for genericg through the OSBA procedure. The BCS model is diagonalized by the quasi-
classical limit of the OSBA equations of the disordered six-vertex model. Retaining certain
off-diagonal terms of the transfer matrix of the vertex model corresponds to the diagonalization
of the integrals of motion of the pairing model for finite g. The ‘mass shell’ condition (and
then the diagonalization of the quasi-classical transfer matrix of the vertex model) reproduces
the limit g → ∞; the corresponding problem is the Gaudin spectral problem.

The integrals of motion of the BCS model coincide with the integrals found by
Sklyanin [10] by considering a twist in the monodromy matrix of the vertex model (see
equation (B.3)). The algebraic equations which diagonalize these integrals of motion via
algebraic BA (namely via the mass shell BA procedure) coincide with Richardson’s equations.
This paper shows that the Sklyanin procedure produces the same results as the OSBA procedure
applied to the untwisted monodromy matrix.

The existence of the relation between BCS model and quasi-classical vertex models, found
in the present paper, is consistent with the correspondence between CFT and the BCS model
recently found by Sierra [20].

Equations (4) were already conjectured by Gaudin (see (5.15) and (5.16) of [8]) as
connected (through Jacobian of certain matrices) with the norms of the Bethe vectors,
det(∂fα/∂eβ) ∼ ‖φ‖ (see [18,23]). In this work we have shown that the Jacobian is connected
with OSBA of the vertex model. This might be useful to compute norms (and scalar products)
and, then, to express the correlation functions of the BCS model as suitable determinants. This
exact calculation is our major task in the future.

Acknowledgments

We thank G Sierra for constant and invaluable help since the early stages of this work.
A Osterloh is acknowledged for very useful discussions and for a critical reading of the
manuscript. We thank F Dolcini and G Giaquinta for discussions. We acknowledge the
financial support of INFM-PRA-SSQI and the European Community (contract FMRX-CT-97-
0143).



6432 L Amico et al

Appendix A. The pairing model and the Gaudin spectral problem

In this appendix we discuss the connection between the pairing model and the Gaudin model.
The limit g → ∞ of the constants of motion τj (6) coincides with Hamiltonians �j .

Following equation (6), the spectrum of the pairing problem coincides with that of the Gaudin
magnet [8]: �(u) := ∑�

j=1 �j/(u − 2εj ) (u is a complex parameter). The total energy is

h(u) := ∑�
j=1 hj/(u − 2εj ) (hj is fixed by equation (12)). The Bethe vectors of the Gaudin

and the pairing problems coincide formally for any g since operators (σ±(u, ε), σ z(u, ε)) in (3)
generate the Gaudin algebra G[sl(2)] in the lowest representation:

[σ z(u, ε), σ±(w, ε)] = ±σ±(u, ε) − σ±(w, ε)
w − u

[σ +(u, ε), σ−(w, ε)] = σ z(u, ε) − σ z(w, ε)

w − u

(A.1)

where σ z(u, ε) := ∑�
j=1 σ

z
j /(2εj − u).

However, the spectral parameters entering the eigenvectors of the two models satisfy, for
generic g, a different equation (compare with equation (4))

N∑
β=1
β �=α

2

eβ − eα
−

�∑
j=1

1

2εj − eα
= 0. (A.2)

We point out that equation (A.2) is the limit g → ∞ of equations (4) for the pairing model.
In this limit the two models have the same eigenvectors (see equations (3), (4) and (A.2)).

Thus the diagonalization of the Gaudin model is equivalent to the diagonalization of the
BCS model for g → ∞.

The limit of large g in equation (8) gives

H ≈ −g

�∑
j,l=1

1

εj − εl
[(εj + εl)σ

z
j σ z

l + εjσ
+
j σ−

l ]

≡ −g

2

�∑
j,l=1

σ +
j σ−

l (A.3)

which (consistently) reproduces the Hamiltonian (1) for large g.
The QISM was applied to Gaudin magnet for generic spin Sj in [8, 24]. In this case the

Gaudin Hamiltonians are Hl := ∑�
j=1
j �=l

Sl · Sj /(εj − εl). The spectral parameters obey

N∑
β=1
β �=α

1

eβ − eα
−

�∑
j=1

sj

2εj − eα
= 0 (A.4)

where −sj corresponds to the highest weight vector of Sj .

Appendix B. Integrability of the inhomogeneous vertex model

In this appendix we discuss the QISM of the inhomogeneous vertex model together with its
quasi-classical expansion.

The universal matrix of the model reads

RX(λ − z; η) = 11 ⊗ 11 + f (λ − z, η)σ ⊗ X (B.1)

where f (x, η) := 2η/(η − 2x) depending on the arbitrary parameter η ∈ R. The physical
R-matrix of the model corresponds to taking X ≡ S in (B.1); the auxiliary one corresponds to
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X ≡ σ and z = 0. Both these matrices fulfil homogeneous (S ≡ σ ) Yang–Baxter relations;
in addition they fulfil the inhomogeneous (S �= σ ) one [12]:

R12
σ (λ − µ)R23

S (λ − z)R12
S (µ − z) = R23

S (µ − z)R12
S (λ − z)R23

σ (λ − µ) (B.2)

where R12 .= R⊗11 and R23 .= 11⊗R act on the vector space V1 ⊗V2 ⊗V3; R12 and R23 act as
the identity in the vector spaces 3 and 1 respectively. Equation (B.2) is the sufficient condition
for which the model can be solved by diagonalizing the column to column (which is 2×2 matrix
in operators Sj ) transfer matrix (instead of the row to row one which is (2sj + 1)× (2sj + 1))
obtained through the trace in the two-dimensional horizontal vector space (which is spanned
by spins along the rows of �) labelled by ‘(0)’:

T (λ|z) := tr(0) J (λ|z). (B.3)

Twisted monodromy matrix is obtained by J (λ|z) → eaσ
z
j J (λ|z). The transfer matrices

commute at different values of spectral parameters: [T (λ|z), T (µ|z)] = 0 (this proves the
integrability of the model) since the monodromy matrix J (λ|z) := ∏1

j=Nv
R
(0)
Sj
(λ−zj ) satisfies

Rσ (λ − µ)[J (λ|z) ⊗ J (µ|z)] = [J (µ|z) ⊗ J (λ|z)]Rσ (λ − µ) (induced by equation (B.2).
The matrices R(0)

Sj
and Rσ are

R
(0)
Sj
(x, η) :=

(
11 + f (x, η)Szj f (x, η)S−

j

f (x, η)S+
j 11 − f (x, η)Szj

)
(B.4)

Rσ (λ − µ, η) :=




1 0 0 0
0 c b 0
0 b c 0
0 0 0 1


 (B.5)

where b(λ− µ) := η/(η − λ− µ), c(λ− µ) := λ− µ/(λ− µ− η) (note that Rσ (λ− µ, η)

is z-independent).
In the quasi-classical limit, the system generates a hierarchy of integrable systems in the

quasi-classical limit since
∞∑

a=b+c=0

[Tb(λ|z), Tc(µ|z)] = 0 (B.6)

where we have used the η-expansion of the transfer matrix: T (λ|z) = ∑∞
a=0 η

aTa(λ|z) (the
sum in equation (B.6) is meant on ordered partitions of a including b ∨ c = 0). Up to order
η2, the transfer matrix reads

T (λ|z) = 211 + 2η2
Nv∑
j=1

Hj

λ − zj
(B.7)

where the Hamiltonians Hj in equation (B.7) are

Hj =
Nv∑
l=1
l �=j

Sl · Sj

zj − zl
(j = 1, . . . , Nv). (B.8)

The transfer matrix (B.7) coincides with the quasi-classical expansion of the twisted Gaudin
model’s transfer matrix (see formula (1.16) of [10]).

References

[1] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[2] Tinkham M 1996 Introduction to Superconductivity 2nd edn (New York: McGraw-Hill)



6434 L Amico et al

[3] Iachello F 1994 Nucl. Phys. A 570 145c
[4] Rischke D H and Pisarski R D 2000 Proc. 5th Workshop on QCD (Villefranche)

(Rischke D H and Pisarski R D 2000 Preprint nucl-th/0004016)
[5] Black C T, Ralph D C and Tinkham M 1995 Phys. Rev. Lett. 74 32

Black C T, Ralph D C and Tinkham M 1996 Phys. Rev. Lett. 76 688
Black C T, Ralph D C and Tinkham M 1997 Phys. Rev. Lett. 78 4087

[6] Matveev K A and Larkin A I 1997 Phys. Rev. Lett. 78 3749
Mastellone A, Falci G and Fazio R 1998 Phys. Rev. Lett. 80 4542
von Delft J and Ralph D C 2001 Phys. Rep. 345 61

[7] Kleinart H 1978 Fortschr Phys. 26 565
[8] Gaudin M 1976 J. Physique 37 1087
[9] Korepin V E, Bogoliubov N M and Itzergin A G 1993 Quantum Inverse Scattering Method and Correlation

Functions (Cambridge: Cambridge University Press)
[10] Sklyanin E K 1989 J. Sov. Math. 47 2473
[11] Baxter R 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[12] Babujian H M 1983 Nucl. Phys. B 215 317
[13] de Vega H J 1984 Nucl. Phys. B 240 495
[14] Kulish P P and Reshetikhin N 1983 J. Phys. A: Math. Gen. 16 L591
[15] Babujian H M 1993 J. Phys. A: Math. Gen. 26 6981

Babujian H M and Flume R 1994 Mod. Phys. Lett. 9 2029
(Babujian H M and Flume R 1993 Preprint hep–th/9310110)

[16] Richardson R W and Sherman N 1964 Nucl. Phys. 52 221
Richardson R W and Sherman N 1964 Nucl. Phys. 52 253

[17] Gaudin M 1995 Travaux de Michel Gaudin. Modèles Exactement Résolus (Les Èditions de Physique)
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